CS103 Syllabus

Part One: Discrete Mathematics					
Date	Topics	Readings	Assignments		
M March 30	Can computers solve all problems? Set Theory The Limits of Computing	Notes, Ch. 1			
w April 1	How do we prove results with certainty? Direct Proofs	Notes, Ch. 2			
F April 3	How do we prove something without directly proving it? Proof by Contradiction Proof by Contrapositive	Notes, Ch. 2	PS1 Out		
M April 6	How do we reason about discrete structures? Mathematical Induction I	Notes, Ch. 3	PS1 Checkpoint Due		
w April 8	How can we model stepwise processes? Mathematical Induction II	Notes, Ch. 3			
F April 10	How can we formalize our reasoning? Propositional Logic		PS1 Due PS2 Out		
M April 13	How can we reason about collections of objects? First-Order Logic I		PS2 Checkpoint Due		
w April 15	How do we rigorously define our terms and definitions? First-Order Logic II				
F April 17	How do we model linked structures? Graphs	Notes, Ch. 4	PS2 Due PS3 Out		
M April 20	How do we model how objects relate to one another? Binary Relations	Notes, Ch. 5	PS3 Checkpoint Due		
w April 22	How do we model transformations between objects? Functions Cardinality	Notes, Ch. 6			
F April 24	Why does the quantity of an object matter? Diagonalization The Pigeonhole Principle	Notes, Ch. 6	PS3 Due PS4 Out		

Part Two: Computability Theory						
Date	Topics	Readings	Assignments			
M April 27	How do we mathematically model computers? Formal Language Theory DFAs I	Sipser 1.1	PS4 Checkpoint Due			
w April 29	Does computation have to be deterministic? DFAs II NFAs	Sipser 1.2				
Th April 30	Midterm I 7PM – 10PM, Location TBA Covers material from PS1 – PS3					
F May 1	Can we generate new programs from old programs? Equivalence of DFAs and NFAs Closure Properties of Regular Languages	Sipser 1.2				
M May 4	Can we build all programs out of smaller programs? Regular Expressions Equivalence of Regular Expressions and NFAs	Sipser 1.3	PS4 Due, PS5 Out			
w May 6	Can computers with finite memory solve all problems? Nonregular Languages The Myhill-Nerode Theorem					
F May 8	How do natural and formal languages overlap? Context-Free Grammars Context-Free Languages	Sipser 2.1				
M May 11	How do we model realistic computers? Turing Machines Designing Turing Machines	Sipser 3.1	PS5 Due, PS6 Out			
w May 13	How powerful are Turing machines? The Church-Turing Thesis The Universal Turing Machine	Sipser 3.2				
F May 15	What does it mean to solve a computational problem? R and RE Languages Algorithms and Semialgorithms					
M May 18	How do proofs relate to computability? Verifiers and NTMs Mathematical Proof and Computability		PS6 Due, PS7 Out			
w May 20	What is the full scope of computing power? The Recursion Theorem Undecidable Problems	Sipser 4.2 Sipser 6.1				
Th May 21	Midterm II 7PM – 10PM, Location TBA Covers material from PS1 – PS6, weighted toward material on PS4 – PS6					
F May 22	What are the hardest problems we can touch? Unrecognizable Languages Intro to Complexity Theory	Sipser 7.1				

	Part Three: Complexity Theory						
	Date	Topics	Readings	Assignments			
М	May 25	Memorial Day No Class					
W	May 27	How do we measure the difficulty of problems? The Complexity Class P The Complexity Class NP	Sipser 7.2 Sipser 7.3	PS7 Due, PS8 Out			
F	May 29	How can we link problems together? Reducibility NP-Completeness	Sipser 7.4				
M	June 1	How do we embed problems inside one another? NP-Completeness Reductions	Sipser 7.5				
W	June 3	How does everything fit together? The Big Picture Where to Go from Here		PS8 Due No Late Submissions			
М	June 8	Final Exam: 8:30AM – 11:30AM Location TBA Cumulative final exam, slightly focused on material from PS7 – PS8					